
Math 42-Number Theory
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Due Thursday, February 24, 2011

2. Prove that if a ≡ b mod m and c ≡ d mod m, then ac ≡ bd mod m.

Solution: If a ≡ b mod m and c ≡ d mod m, then by definition, m | (b− a) and m | (d− c).
In other words, there are integers k and ` such that b − a = mk and d − c = m`. Then notice
that

bd− ac = bd− ad + ad− ac = d(b− a) + a(d− c) = mkd + m`a.

Thus, m | (bd− ac), and ac ≡ bc mod m.

4. Give and justify a formula for ϕ(pk) where p is a prime and k is an natural number.

Solution: Claim: ϕ(pk) = pk − pk−1.

To prove this claim, consider the numbers 1, 2, 3, . . . , pk. To compute ϕ(pk), we need to count
the numbers in this set that are relatively prime to pk. Now, since p is prime, for a number a
to be relatively prime to pk just means that p - a. So we need to count the numbers a such that
1 ≤ a ≤ pk and p - a. There are pk/p = pk−1 multiples of p between 1 and pk (inclusive). Thus,
there are pk − pk−1 natural numbers between 1 and pk (inclusive) that are relatively prime to
pk, and indeed ϕ(pk) = pk − pk−1.

6. Prove that for any a in Um, aϕ(m) ≡ 1 mod m.

Solution: We follow the proof of Fermat’s little theorem from class. Let u1, u2, . . . uϕ(m) be the
elements of Um, and consider all the multiples of a in Um: a ·u1, a ·u2, . . . a ·uϕ(m). Clearly a ·ui
is still in Um since it’s a product of elements of Um, but we will also show that all the multiples
of a are different. This will imply that the multiples of a run through all the elements of Um.

If a · ui ≡ a · uj mod m, then m | (a · ui − a · uj). But since a is in Um, (a,m) = 1 and by
the fundamental theorem of arithmetic, we must have m | (ui − uj). Thus, ui and uj must be
equivalent mod m, and we see that the multiples of a are all different mod m. Therefore, the
multiples of a run through all the elements of Um.

Therefore, we have u1 · u2 · . . . · uϕ(m) ≡ a · u1 · a · u2 · . . . · a · uϕ(m) mod m. Rearranging terms,
we get

u1 · u2 · . . . · uϕ(m) ≡ aϕ(m) · u1 · u2 · . . . · uϕ(m) mod m.

Because u1 · u2 · . . . · uϕ(m) is a product of elements of Um, it must have an inverse mod m.
Multiplying both sides of the above equation by this inverse, we get

aϕ(m) ≡ 1 mod m.

8. In Up, which elements are their own inverses? Explain why.

Solution: In Up, the only elements that are their own inverses are 1 and −1. This is because for
an element to be its own inverse, it must satisfy x2 ≡ 1 mod p, or in other words, p | (x2 − 1).
But if p | (x2− 1), then p | (x− 1)(x+ 1) and because p is prime, p | (x− 1) or p | (x+ 1). Thus,
x ≡ ±1 mod p.

9. Prove your statement from problem 7 about (p− 1)! mod p. Use problem 8.

Solution: We will prove that (p − 1)! ≡ −1 mod p. We can think of (p − 1)! mod p as the
product of all the elements of Up. Now, every element a of Up has an inverse, and either a has
an inverse that is different from a or a is its own inverse. We showed in problem 8 that only



1 and −1 are their own inverses, so all other elements of Up pair up with their inverses. Then,
multiplying all the elements of Up we get a factor of 1 for every pair a, a−1 where a and a−1 are
different, and we have 1 and −1 left unpaired. Thus, (p− 1)! ≡ −1 mod p.

10. Using induction, show that for any natural number n, (1+2+3+. . .+n)2 = 13+23+33+. . .+n3.

Solution: Base case: n = 1. It is true that 12 = 13, so the base case is done.

Inductive step: Suppose the statement is true for 1 ≤ k < n. We’ll now show it’s true for n. If
the statement is true for 1 ≤ k < n, in particular it’s true for n− 1, and we know that

(1 + 2 + 3 + . . . + (n− 1))2 = 13 + 23 + 33 + . . . + (n− 1)3.

Now consider (1 + 2 + 3 + . . . + n)2. We can think of this as

((1 + 2 + 3 + . . .+ (n− 1)) + n)2 = (1 + 2 + 3 + . . .+ (n− 1))2 + 2n(1 + 2 + 3 + . . .+ (n− 1)) + n2.

Using the inductive hypothesis, we get

(1 + 2 + 3 + . . . + n)2 = 13 + 23 + 33 + . . . + (n− 1)3 + 2n(1 + 2 + 3 + . . . + (n− 1)) + n2.

But now 1 + 2 + 3 + . . . + (n− 1) = n(n−1)
2 , so substituting, we get

(1 + 2 + 3 + . . . + n)2 = 13 + 23 + 33 + . . . + (n− 1)3 + n2(n− 1) + n2 = 13 + 23 + 33 + . . . + n3.

Therefore, for all n ∈ N, we have(1+2+3+. . .+n)2 = 13+23+33+. . .+(n−1)3+n2(n−1)+n2 =
13 + 23 + 33 + . . . + n3.

11. Extra Credit : Explain the flaw in the following proof that every bear is the same color.

We’ll show that every bear is the same color by showing that when you take any set of bears,
every bear in that set is the same color. We proceed by induction on the number of bears in a
set. If we only consider sets containing one bear, clearly every bear is the same color as itself,
so in a set of one bear, every bear in the set is the same color. That is our base case. For the
inductive step, suppose that any set containing up to n−1 bears has all bears of the same color.
We want to show that any set with n bears in it has all bears of the same color. So take a set of
n bears. Removing one bear (call him Yogi), we have a set of n− 1 bears, and by assumption,
all those bears are the same color. But we can remove a different bear (say, Bruno) from the
set and put Yogi back in to get a different set of n − 1 bears, and we see that these bears are
all the same color. But since Yogi and Bruno were both the same color as all the other bears
in the set, Yogi and Bruno are also the same color as each other, and in fact all n bears are the
same color. This proves that in any set of bears, all bears are the same color.

Solution: The flaw in this proof is that the inductive step doesn’t work when going from 1
to 2. If we are trying to prove that in every set of two bears, both bears are the same color,
our proof would have us take one bear (Yogi) out of the set temporarily, leaving a lone bear
(Bruno). Then Bruno is the same color as himself. The proof then has us temporarily remove
Bruno, leaving just Yogi, who is the same color as himself also. The problem is that there was
no bear that both Yogi and Bruno were compared. The proof relies on the fact that there was
overlap between the set without Yogi and the set without Bruno, which isn’t true when the set
has just two bears.


